Entrer un problème...
Algèbre linéaire Exemples
Étape 1
Définissez la formule pour déterminer l’équation caractéristique .
Étape 2
La matrice d’identité ou matrice d’unité de taille est la matrice carrée avec les uns sur la diagonale principale et les zéros ailleurs.
Étape 3
Étape 3.1
Remplacez par .
Étape 3.2
Remplacez par .
Étape 4
Étape 4.1
Simplifiez chaque terme.
Étape 4.1.1
Multipliez par chaque élément de la matrice.
Étape 4.1.2
Simplifiez chaque élément dans la matrice.
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez .
Étape 4.1.2.2.1
Multipliez par .
Étape 4.1.2.2.2
Multipliez par .
Étape 4.1.2.3
Multipliez .
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Multipliez par .
Étape 4.1.2.4
Multipliez par .
Étape 4.2
Additionnez les éléments correspondants.
Étape 4.3
Simplify each element.
Étape 4.3.1
Additionnez et .
Étape 4.3.2
Additionnez et .
Étape 5
Étape 5.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5.2
Simplifiez le déterminant.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Développez à l’aide de la méthode FOIL.
Étape 5.2.1.1.1
Appliquez la propriété distributive.
Étape 5.2.1.1.2
Appliquez la propriété distributive.
Étape 5.2.1.1.3
Appliquez la propriété distributive.
Étape 5.2.1.2
Simplifiez et associez les termes similaires.
Étape 5.2.1.2.1
Simplifiez chaque terme.
Étape 5.2.1.2.1.1
Multipliez par .
Étape 5.2.1.2.1.2
Multipliez par .
Étape 5.2.1.2.1.3
Multipliez par .
Étape 5.2.1.2.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.2.1.2.1.5
Multipliez par en additionnant les exposants.
Étape 5.2.1.2.1.5.1
Déplacez .
Étape 5.2.1.2.1.5.2
Multipliez par .
Étape 5.2.1.2.1.6
Multipliez par .
Étape 5.2.1.2.1.7
Multipliez par .
Étape 5.2.1.2.2
Additionnez et .
Étape 5.2.1.3
Multipliez par .
Étape 5.2.2
Additionnez et .
Étape 5.2.3
Remettez dans l’ordre et .
Étape 6
Définissez le polynôme caractéristique égal à pour déterminer les valeurs propres .
Étape 7
Étape 7.1
Factorisez à l’aide de la méthode AC.
Étape 7.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 7.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 7.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 7.3
Définissez égal à et résolvez .
Étape 7.3.1
Définissez égal à .
Étape 7.3.2
Ajoutez aux deux côtés de l’équation.
Étape 7.4
Définissez égal à et résolvez .
Étape 7.4.1
Définissez égal à .
Étape 7.4.2
Ajoutez aux deux côtés de l’équation.
Étape 7.5
La solution finale est l’ensemble des valeurs qui rendent vraie.